A **composition** of transformations is one transformation immediately followed by a second transformation.

Example: glide reflection

As you already know, a glide reflection is the composition of a translation and a reflection.

Plot points A(3, 3) and B(7, 4). Connect to form \overline{AB} .

Do translation $\langle -8,0 \rangle$. (X-8, Y) A'(-5.3) and B'(-1.4). Connect to form $\overline{A'B'}$. A'(3-8,3) B'(7-8,4)

Do reflection r_{x-axis} . (x,-y) A" $(\underline{-5,-3})$ and B" $(\underline{-1,-4})$. Connect to form $\overline{A"B"}$.

 $\overline{A''B''}$ is a glide reflection of \overline{AB} .

New Today

new notation: o "is composed with"

The previous composition could be denoted like this: $(r_{x-axis} \circ T_{-8,0})(\overline{AB})$. In **any** composition denoted in this manner, you always work from **RIGHT to LEFT**. So for this composition, you would graph \overline{AB} first, then do $\langle -8,0 \rangle$, and finally do r_{x-axis} .

Also, must know coordinate rules.

Composition problems can be done without graphs. Just make sure you know your composition rules.

1. If the coordinates of P are (-2, 7), what are the coordinates of $(R_{270} \circ r_{y=x})(P)$?

$$P(-2,7) \xrightarrow{\Gamma_{Y=X}} (7,-2) \xrightarrow{R_{270}} (-2,-7) = P'$$

what single transformation maps (-2,7) -> (-2,-7)?

$$(x,y) \rightarrow (x,-y) = (x-axis)$$

2. If the coordinates of P are (2, -3), what are the coordinates of $(R_{90} \circ R_{180})(P)$?

 $P(2,-3) \xrightarrow{R_{180}} (-2,3) \xrightarrow{R_{90}} (-3,-2) = P'$

Do this in a single-transformation.

 $(2,-3) \rightarrow (-3,-2)$ $(x,y) \rightarrow (y,-x) = R_{270}$ 3. What is the image of P(-4, 6) under the composition $(r_{y=x} \circ r_{y-axis})(P)$?

4. The coordinates of point A are (3, -1). What are the coordinates of A', the image of A under the composition (T_{2,5} ° r_{x-axis})?
2. I

A(3,-1) Txaxis (3,1) (2,5) (5,6)= A')

Do this as a single transformation:

$$(3,-1) \longrightarrow (5,6)$$

 $(X,Y) \longrightarrow (X+2,Y+7) = <2,7>$

5. If the coordinates of A are (3, 5), what are the coordinates of $(r_{x-axis} \circ R_{180})(A)$?

$$A(3,5) \frac{R_{180}}{(-x,-y)} (-3,-5) \frac{\Gamma_{x-axi5}}{(x,-y)} (-3,5) = A'$$